
DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering
Roadmap
the EDM design team

Revision 1.35

Contents

1 Introduction 6

1.1 Purpose of this Document . 6

1.2 Structure of this Document . 6

1.3 Scope of the Project . 6

1.4 Rationale for the Project . 7

2 Requirements 7

2.1 “Physics Requirements” from the CMS Computing Model 7

2.2 Constraints from Software and Computing Management 8

2.3 The CMS Analysis Model . 8

2.4 Requirements from the HLT . 8

2.5 Grid Computing Support . 9

2.6 Several Typical Use Cases . 9

2.6.1 Case 1: Official Jet Reconstruction with a Cone Algorithm 9

2.6.2 Case 2: Official Jet Reconstruction with a Cone Algorithm 10

2.6.3 Case 3: to be determined . 10

3 Technology 10

4 Architectural Overview 10

4.1 Responsibilities of Subsystems and External Systems 10

4.2 Major Components of the Infrastructure . 11

4.2.1 Architecture of the Event-Processing Application 11

4.2.1.1 Commonalities . 11

4.2.1.2 The Unscheduled Application 11

4.2.1.3 The Scheduled Application . 12

1

DRAFT
1.3

5

DRAFT
1.3

5

2

4.2.2 Architecture of the Event-Data Model 12

5 Analysis 12

5.1 There is more than one source of data . 12

5.2 Templating or Base Class for EDProducts? . 13

5.3 Lifetime Management of EDProducts . 13

5.4 Unambiguous identification of reconstruction results 14

5.5 Branch naming from provenance information 16

5.6 Communication between event-processing elements 16

5.7 Input is Not Like Output . 16

5.8 Event mixing module . 17

5.8.1 Use cases . 17

5.8.1.1 Use case 1 . 17

5.8.1.2 Use case 2 . 17

5.8.2 Requirements . 17

5.8.3 Tasks of the mixing module . 18

5.8.3.1 Event mixing . 18

5.8.3.2 Access to the mixing information 18

5.8.4 Configuration . 18

5.8.4.1 Configuration of the mixing module 18

5.8.5 Configuration of the secondary input service 19

5.8.6 Mixing module in new framework . 19

5.8.6.1 EDProduct . 19

5.8.6.2 Architecture of the Mixing module 19

5.8.6.3 Demands on the secondary input service 20

5.8.6.4 Example of a corresponding Parameter Set 20

5.9 Schedule Specifications for the HLT . 20

5.9.1 Concept Definitions . 21

5.9.2 Example Problem . 21

5.9.2.1 Top (muon) trigger: tµ . 21

5.9.2.2 Top (electron) trigger: te . 21

5.9.3 An Insufficient Solution . 21

5.9.4 A Sufficient Solution . 22

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 3

5.10Multiple Products from One EDProducer . 22

5.11Access to EDProducts . 23

5.11.1Definitions . 23

5.11.2This needs a home nearby . 24

5.11.3Guidelines . 24

5.11.4Anticipated Access Needs . 24

5.11.5Proposal . 25

5.11.6Consequences . 26

5.12Insertion of EDProducts . 27

5.12.1Solution One . 27

5.12.2Solution Two . 27

5.12.3Comparison . 28

5.13Comparison of the RecAlgorithm System to EDProducers 28

5.13.1What is an “algorithm”? . 28

5.13.2Who are the “users”? . 29

5.13.3Coupling of algorithm system to configuration system 29

5.13.4Algorithm names . 29

5.13.5Version identification . 29

5.13.6Types of parameters . 30

5.13.7Handling of doubles . 30

5.13.8Default parameters for algorithms . 30

5.13.9Calibration data in algorithm configuration 30

6 Design of the Core Infrastructure 31

6.1 Overview . 31

6.2 The Event . 31

6.3 EDProducts . 32

6.3.1 Common Bookkeeping Information . 32

6.3.2 Rules for defining an EDProduct class and its components 33

6.3.3 Rules for modification of an existing EDProduct 37

6.4 Provenance . 38

6.5 Selectors . 38

6.5.1 Different selection of event products 38

DRAFT
1.3

5

DRAFT
1.3

5

4

6.6 Modules . 39

6.6.1 General Characteristics . 39

6.6.2 Types of Framework Modules . 39

6.6.3 EDProducers . 40

6.6.4 Mixing Modules . 41

6.6.5 Input and Output Modules . 42

6.7 The ParameterSet System . 42

6.7.1 ParameterSets . 42

6.7.2 Identifying Parameter Sets . 43

6.7.3 User Creation of Parameter Sets . 44

6.7.4 Informal ParameterSet language specification 44

6.7.5 ParameterSet object interface features 44

6.7.6 Mapping from input grammar to ParameterSet objects 44

6.7.7 Event mixing problem . 47

6.8 The ModuleFactory and ModuleRegistry . 48

6.8.1 ModuleFactory . 48

6.8.2 ModuleRegistry . 49

6.8.2.1 Future Additions . 49

6.9 The Scheduler System . 50

6.9.1 ScheduleBuilder . 50

6.9.1.1 Prerequisite Consistency Check Algorithm 52

6.9.1.2 Path reduction . 53

6.9.1.3 Future Additions . 53

6.9.2 ScheduleExecutor . 53

6.10The EventProcessor . 53

6.11Non-Event Data . 53

6.11.1EventSetup System . 53

6.11.2EventSetup . 53

6.11.3Records . 54

6.11.4Contents of a Record . 54

6.11.5EventSetup System Components . 55

6.11.5.1Low-level Interfaces . 56

DRAFT
1.3

5

DRAFT
1.3

5

6.11.5.2EventSetup Source . 56

6.11.5.3 EventSetup Producer . 56

6.11.6Dependent Records . 56

6.11.7EventSetup configuration . 57

6.12Data Management . 57

7 Design of Interfaces to Other Systems 58

8 Development Approach 58

9 Release Management and Testing 58

10 Deployment 58

A Glossary of Terms 58

Bibliography 59

List of Figures

1 The configuration grammar for scheduled event-processing applications. . . . 23

2 The flow of control for the execution of a single EDProducer object. 40

3 Elements of a job configuration . 45

4 Essential elements of a pset and process objects 46

5 Mapping from module section to ParameterSet 46

6 Mapping from source section to ParameterSet . 47

7 Mapping from process section to ParameterSet 48

8 Sample mixer configuration . 49

9 Class diagram of the ScheduleExecutor and its relationship with various types
of modules. 51

10 The EventSetup is formed from the Records that have an IOV that overlaps
with the moment in time that is being studied. 54

11 The EventSetup system design. 55

List of Unanswered Questions

1 Is MD5 suitable for use as ParameterSet id? . 43

5

DRAFT
1.3

5

DRAFT
1.3

5

6

1 Introduction

1.1 Purpose of this Document

This document is a roadmap to aid the re-engineering of the CMS core software: the
event data model (EDM) and framework. It contains many sections that are incomplete,
and will continue to do so for the foreseeable future. It contains discussions of require-
ments, system architectures, design guidelines, details of the design, and plans for the
future.

1.2 Structure of this Document

No section of this document is “final”. All are subject to change.

Sections marked . . .

Commentary from: Marc Paterno

. . . like this

are notes added by one (or more) authors, but that have not yet been “approved” as
an official part of the document. Section marked like this are specially called out as
incomplete sections.

Sections marked with like this:
“Approved on 7 Oct 1571”
have been officially approved. This means that we consider the points in such a section
settled. In order to re-open such a point for discussion, one needs to make a persuasive
argument that the related analysis is incorrect or incomplete, and to persuade the others
that some new analysis is better.

In many parts of this document, we refer to several examples of code, configuration
information, and other information. While we strive to make the examples realistic, we
note that we are using them for expository purposes only. We do not intend them to be
taken a candidate physics algorithms, or trigger algorithms.

1.3 Scope of the Project

The project includes two major sets of deliverables:

1. a software framework for the creation of event-processing applications, (called “the
framework”) and

2. a software framework for the representation (both in-program and persistent) of
collider data, both simulated and real, (called “the event-data model”, or EDM).

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 7

Included in this project is the required mechanisms to allow event-processing appli-
cations to communicate with external systems that perform the other tasks necessary
to allow efficient processing of event.

Maybe we should put a list of these different systems, or perhaps instead tasks, here?

1.4 Rationale for the Project

Put a statement of the reason for the re-engineering project here.

2 Requirements

We believe a loose definition of “requirements” is most useful. We have not found it
useful to make sharp distinctions between:

1. constraints, such as “the code must compile with GCC 3.4.2”,

2. behavioral or functional requirements,

3. performance requirements, such as “the high-level trigger must accept x events/s
as input, and produce y events/s as output”, and

4. software engineering guidelines, such as the desire for testability.

2.1 “Physics Requirements” from the CMS Computing Model

The CMS Computing Model [1] specified 34 requirements for the CMS Computing
Model. Some of these seem to be of direct relevance to the design of the event-data
model and the event-processing framework.

R-1 The online HLT system must create “RAW” data events containing: the detector
data, the L1 trigger result, the result of the HLT selections (“HLT trigger bits”), and
some of the higher-level objects created during HLT processing.

R-5 Event reconstruction shall generally be performed by a central production team,
rather than individual users, in order to make effective use of resources and to
provide samples with known provenance and in accordance with CMS priorities.

R-6 CMS production must make use of data provenance tools to record the detailed
processing of production datasets and these tools must be usable (and used) by all
members of the collaboration to allow them also this detailed provenance tracking.

R-13 The online system will classify RAW events into O(50) Primary Datasets based
solely on the trigger path (L1+HLT); for consistency, the online HLT software will
run to completion for every selected event.

DRAFT
1.3

5

DRAFT
1.3

5

8

R-22 A crucial access pattern, particularly at startup will require efficient access to
both the RAW and RECO parts of an event.

R-23 The reconstruction program should be fast enough to allow for frequent reprocess-
ing of the data.

R-26 CMS needs to support significant amounts of expert analysis using RAW and
RECO data to ensure that the detector and trigger behavior can be correctly un-
derstood (including calibrations, alignments, backgrounds, etc).

R-27 Physicists will need to perform frequent skims of the Primary Datasets to create
sub-samples of selected events.

R-30 Access to information stored in AOD format shall occur through the same inter-
faces as are used to access the corresponding RECO objects.

R-31 An “Event directory” system will be implemented for CMS.

R-33 Multiple GRID implementations are assumed to be a fact of life. They must be
supported in a way that renders the details largely invisible to CMS physicists.

R-34 The GRID implementations should support the movements of jobs and their exe-
cution at sites hosting the data, as well as the (less usual) movement of data to a
job. Mechanisms should exist for appropriate control of the choices according to
CMS policies and resources.

As other requirements from [1] seem to be needed, we can add them here.

Lacking from the list in [1] is a statement of the required speed of the high-level
trigger.

2.2 Constraints from Software and Computing Management

Explicit processing path scheduling must be supported by this system; the system must
support the expression of data-flow paths within job configuration. This feature will exist
to support the trigger, where users of the system directly state a path through which an
event will pass allowing resources to perform the task to be estimated accurately at
program start-up time.

2.3 The CMS Analysis Model

What requirements to we have from the specification of the CMS Analysis Model? What
is the official reference that specifies the CMS Analysis Model?

2.4 Requirements from the HLT

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 9

Put stuff here regarding how we want specification of high-level triggers to be done as
independent paths, so that the designer of a trigger doesn’t have to understand other
triggers.

It should also describe that we want the trigger program to combine paths to allow
for optimal execution.

We also require diagnosis of mis-configured trigger programs at configuration (pro-
gram start-up) time.

2.5 Grid Computing Support

The event-processing applications need to be able to work in a grid environment. While
it is not always clear what this really means, we understand it to mean that an event-
processing application must expect to be “packaged” and sent to a target site. The
event-processing application must not make such packaging and submission unwieldy.

We do not expect the event-processing application to directly support any particular
“grid technology”. For example, the event processing application will not itself submit
remote jobs, or request event-data files from remote resources.

2.6 Several Typical Use Cases

2.6.1 Case 1: Official Jet Reconstruction with a Cone Algorithm

This is grossly incomplete; we’ll add more as we understand what we need.

Task Jet reconstruction.

Goal Use a cone algorithm to reconstruct jets, starting from raw data, putting the re-
construction results into the Event.

Actor Physicist who is running the event processing application who wishes to run a
specific cone jet algorithm.

Precondition There already exists a file of events containing raw data. The input and
output configuration are already given (and are outside the scope of this use case).

Description 1. Make available parameter sets for the tower generating module, the
cone jet algorithm, and the jet finder algorithm. We will build calorimeter
towers from raw data, relying on an already-built vertex; Then we will build
cone jets from these towers, recording full provenance information about the
reconstructed information.

2. Express in the task configuration that each of these modules is available

3. Express in the task configuration that the Jets collection production is re-
quired (this assumes demand driven will be chosen for this job

DRAFT
1.3

5

DRAFT
1.3

5

10

4. Identify the process to which this job belongs and the calibration/alignment
set needs in the job configuration.

5. generate a configuration bundle featuring all the above data

6. use the identifier for the bundle to submit a job using an approved reconstruc-
tion executable

2.6.2 Case 2: Official Jet Reconstruction with a Cone Algorithm

Similar to case 1, but not using official code—rather, using development code, and test-
ing a new algorithm.

2.6.3 Case 3: to be determined

More use cases can go here, if needed. If not, the section title should be fixed.

Insert a forward reference to 5.10 on page 22 here.

3 Technology

Put here the technologies we must interact with. For example:

• POOL and ROOT are to be used for persistency.

• PHEDEX is used for . . . what?

• . . . lots of other products are used . . .

4 Architectural Overview

4.1 Responsibilities of Subsystems and External Systems

The task of the event-processing application is to process a sequence of collisions (either
simulated or real), with the possibility of producing one or more output files.

Input modules are responsible for obtaining events. Each input module must under-
stand one method of presentation:

• a sequence of event-data files, in the “native format” of the application;

• events presented to the high-level trigger as . . . Put a description of how the raw
data, and the L1 data, are presented to the HLT here.

• What other presentation methods do we need? Events provided over a socket,
rather than a file? Does this even make sense? Are there others?

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 11

What is the “atom” of event-data for file handling? Are there any rules applied to
decide whether two events can be in the same file? What non-event data should be
shipped in the file with the event-data?

4.2 Major Components of the Infrastructure

The two major components of the core software are:

• the framework for the event-processing application, and

• the event-data model.

4.2.1 Architecture of the Event-Processing Application

We will support two different “styles” of event-processing application in the same soft-
ware framework. One style of application supports reconstruction on demand, in the
style of the previous ORCA framework. The other style is more “linear”, and is more
similar to the style of the CDF and DØ trigger and reconstruction frameworks. We call
these styles unscheduled and scheduled.

4.2.1.1 Commonalities

For both the unscheduled and the scheduled applications, EDProducer instances are the
objects that actually perform the task of reconstruction. An author of an EDProducer
does not need to choose to support one or the other style of use; any EDProducer is able
to be used in either mode.

For both styles of application, the same EDProduct classes are used, and the same
EDProduct instances will be produced from identically-configured EDProducers.

For both styles of application, the same parameter set system is used to configure
the EDProducers.

For both styles of application, the same input and output formats are supported.

4.2.1.2 The Unscheduled Application

In the unscheduled application, the action of requesting an EDProduct from the Event
may cause the invocation of an EDProducer. The high-level view of the mechanism is:

1. User code requests an EDProduct through the Event::get member template, pos-
sibly specifying a selector.

2. The Event looks for any already-created objects of the correct type (and that match
the selector, if one was provided). Such objects may be already loaded in memory,
or may be retrieved from the input source.

DRAFT
1.3

5

DRAFT
1.3

5

12

3. If no match was found, the Event queries a registry of EDProducers to discover
which ones are able to create EDProducts of the correct type (and which could
match the provided selector, if any). If no such matches are found, the user will
receive an indication that no match is available. No new libraries can be loaded at
this time.

4. Any EDProducers found in step 3 are invoked, creating their products and entering
them into the Event, and possibly causing a cascade of other reconstruction.

5. Any EDProducts generated from the EDProducers just invoked are returned to the
user. If no appropriate producers were found, no products may be returned.

An unscheduled application is configured by specifying:

• a selection of independent top-level EDProducts to be written out, or

• a selection of independent high-level triggers to be run, or

• an analysis module to be run, or

• some combination of the above.

and also

• the menu of EDProducers that should be known to the registry of EDProducers.

The combination of EDProducts in the input source and EDProducers registered in
the program are the only things that limit the variety of EDProducts than can be obtained
from any Event.

What other useful ways are there to invoke an unscheduled application?

4.2.1.3 The Scheduled Application

A scheduled application is configured by specifying a module instance path through
which the event will flow. More derived or calculated products will be added to the event
as it moves through the path.

The responsibility of getting the proper dependency ordering within an explicitly spec-
ified path lies with person configuring the job.

4.2.2 Architecture of the Event-Data Model

5 Analysis

5.1 There is more than one source of data

Modules in an event processing application obtain different types of data from different
sources. Conditions data come from services. Geometry data come from services. Event

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 13

data, and data related to collections of events (such as runs or luminosity blocks) are
passed to the modules during the event processing loop.

5.2 Templating or Base Class for EDProducts?

It is possible to design the Event and related classes with either of two different different
styles of design for EDProducts:

1. EDProducts all inherit from a base class, or
2. EDProducts implement a simple generic programming concept.

In the first solution, users writing their data classes must inherit from a base class; in
the second, there is no such need. In both cases, the “get” and “put” functions of the
Event work with the user’s class directly.

In the first solution, heterogeneous containers of EDProducts work because all inherit
from the base class EDProduct. In the second solution, we’d have to introduce a base
class, and a “wrapper” template that inherits from it, to form heterogeneous containers.
This wrapper would appear as another level of indirection in the ROOT output files, and
would be an (admittedly minor) annoyance to the user of the ROOT prompt.

Solution two would allow the use of simple things like std::vector<CaloJet> di-
rectly as an EDProduct. Solution one requires writing a class that could contain a
std::vector<CaloJet>. This container would appear as another level of indirection
in the ROOT output files, and would be an (admittedly minor) annoyance to the user of
the ROOT prompt.

We want every EDProduct to know the EDP id it is assigned. Solution one allows this
functionality to be supplied by the base class. In Solution two, the “wrapped” EDProduct
has this functionality, but the “bare” EDProduct does not.

The initial implementation of EDProduct used a base class. However, a decision
subsequently was made to use wrappers, and an implementation using wrappers has
supplanted the original implementation.

5.3 Lifetime Management of EDProducts

It is important that the lifetimes of the EDProducts be controlled in a deterministic
fashion, to avoid resource leaks.

Because the persistent format of the CMS data is based on ROOT, we considered
having the EDProduct instances allocated directly in ROOT buffers. While this has the
beneficial feature of avoiding a memory-to-memory copy of the EDProduct, it has several
drawbacks that made us decide to not choose this design. The drawbacks we identified
are the following.

1. It makes a stronger coupling between the EventPrincipal and ROOT.

DRAFT
1.3

5

DRAFT
1.3

5

14

2. This couping makes it much harder to create EDProduct instances that will not be
managed by ROOT. This may be important for the high level trigger, which will
process many events that are rejected. Creating and destroying objects in ROOT

buffers, and the detailed management necessary to avoid corruption of the files
created, may waste critical time in the trigger.

3. This coupling would make it much harder to write the same event-data to several
different outputs, whether those outputs are multiple ROOT files or output formats
other than ROOT.

4. This coupling may make the writing of selected (rather than all) EDProducts in an
event to persistent storage.

For these reasons, we believe that the cost of a memory-to-memory copy of those ED-
Products selected for output is less than the cost of the design that avoids that memory-
to-memory copy.

5.4 Unambiguous identification of reconstruction results

It is critical for users to be able to unambiguously identify how each reconstruction
result was produced. There are several varieties of information that constitute this
identification.

Collectively, we refer to all this information as the provenance of the EDProduct. Each
EDProduct is associated with a Provenance object that records this information. Where
appropriate, Provenance objects are shared between EDProduct instances.

1. Module configuration

a) The unique identifier representing all (the names and values) of the run-time
configuration parameters given to the module.

b) A string giving the fully-qualified class name of the module.

2. Parentage

A vector of the unique identifiers of the EDProducts used as inputs for this bit of
reconstruction.

The identifiers are unique to the event. It is possible to maintain common identifier
lists and tag those with an ID and only record.

Although a module can make use of more than one input to create its output, we
make no attempt to specify the type of the EDProduct to which each of the entries
in this vector refer. If such identification is needed in a particular EDProduct, that
product can store the information in its own member data. We rejected providing a
mapping of class name to EDP id because we deemed the complexity unwarranted
for the simple use to which the “parentage” information, in this general form, is
put.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 15

3. Executable configuration

a) A “human friendly” string called a module label, which is a unique identifier
(within a job) used for EDProducts created by the module configured by this
label. This label comes from a module configuration parameter with a fixed
name. Each module has exactly one of these.

The label configuration parameter is special. Changing the label in the con-
figuration will cause a new module to come into existence because a unique
ParameterSet determines module instances. However, the label is not part of
the permanently generated ID.

b) A single version number that defines the code for the entire executable. The
user can obtain specific library version numbers by querying a central data-
base, using this version number.

The value is only meaningful for tagged releases.

This number specifies which libraries were available when building the appli-
cation; it does not indicate that all such libraries were used.

4. Conditions Data

An identifier representing the calibration and alignment set that was used in the
construction of this EDProduct.

We assume here that calibration and alignment are handled in the same way and
that this single, high-level identifier refers to all the calibration information used
for this event. It is possible that individual calibrations (e.g., silicon, calorimeter,
muon) will also have IDs associated with them and that each of these will need to
be recorded instead of the “set” ID.

Other conditions data IDs may also be needed here, such as geometry version or
hardware configuration.

5. Job configuration

A physical process name. A job starts up in a particular context such as HLT or
Reconstruction. This name identifies the process under which the job was started
and is likely to be a run-time property.

A pass identifier?

All of this provenance data is distinguished from the event data because its principal
home is in an ancillary database, although a copy may be readily accessible from the
event data (e.g., within the file that contains events).

DRAFT
1.3

5

DRAFT
1.3

5

16

5.5 Branch naming from provenance information

Provenance data will exist in a form that is traversable from the ROOT prompt (brows-
able).

The branch name is composed of a

1. Friendly product type name
2. Process name
3. Module label

The separator is assumed to be an underscore. Friendly product type name comes from
the persistency tools. Its definition is assumed to be external to the source code and
module configuration system. The provenance will not maintain this string.

This will help users move between the “data” and C++ object model views of the EDM.

5.6 Communication between event-processing elements

Approved on 7 March 2005

Clearly the event-processing elements (called here modules) need to communicate—
the hits produced by one module will be used to form tracks by another. In order to pro-
vide for modular testing, which is important for quality assurance of the physics results,
we require that modules communicate only through the Event, by putting EDProducts
into the Event. Furthermore, we require that one may “cut” the event-processing chain
between any two modules, and save the state of the event at that instant. This requires
that all EDProducts be persistable.

While each EDProduct must be persistable, this does not imply each one must be
persisted for every event. The event output mechanism must be capable of selective
writing of EDProduct instances, for example to several output streams.

We recognize the fact that placing this requirement on the design of all EDProducts
makes the burden on the designer of each EDProduct class at least slightly greater. It
is important for us to keep this burden as small as possible, without violating our other
requirements.

5.7 Input is Not Like Output

There is a lack of symmetry between input and output of events.

In the context of several paths of execution, it is possible to schedule output perhaps
to multiple streams in each path of execution. For example, a single event process-
ing executable might contain a path performing W mass analysis, and a second path
performing tt̄ mass analysis. Each of these paths could usefully write those events
interesting to the analysis to its own stream.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 17

Input of events does not have such a similar use. Each job has a single “driving
source” of events. This source might read several files, perhaps in parallel. The input
still appears to the event processing application as a single stream of events.

For these reasons, we see the need for an input service, which is not a module, and
for output modules.

In general, the framework will invoke the appropriate input service. As a special case,
a mixing module could invoke an additional input service or services.

5.8 Event mixing module

5.8.1 Use cases

5.8.1.1 Use case 1

Merge Hits from a number of pileup simulated events to a signal simulated event.

The number of pileup events to be merged is a function of the machine luminosity.
Out of time pileup must be considered in addition to in-time pileup, the number of
crossings before and after the nominal one to be considered is sub detector dependent.

This is the main use case, as is needed for the digitisation of simulated data in the
new framework. This usecase has a production flavour.

5.8.1.2 Use case 2

The framework should also be able to support, with a minor priority, the merging of a
real data event to another real data event, to simulate more complicated events.

The merging of real data implies merging at the digi level, in contrast to the main use
case. As the digitisation will have occurred in both data streams, the digi values cannot
be added without an approximation or without full deconvolution of the digitisation fol-
lowed by redigitisation.

5.8.2 Requirements

• there is an I/O efficiency requirement, at least for usecase 1. Considering out-of-
time pileup from -5 bunch crossings and up to +3 bunch crossings and the highest
luminosity giving 17.5 pileup events in average per crossing, this gives a number
of 160 pileup events as input to be merged to a single signal event. Typical size of
pileup events at Hit level is 150kB, and 500kB for signal events. That means that
the mixing module must be able to handle 25MB of input and 0.5MB of output in
a very short processing time.

• Fixed and Poissonian are different possibilities of calculating the number of pileup
events to merge, all of them should be implemented.

DRAFT
1.3

5

DRAFT
1.3

5

18

• Merging of MC true information must be considered. A minimum here is to com-
bine the MC truth at particle level, keeping track of which particles come from
the primary stream (signal) and which come from the secondary stream (pileup or
secondary signal).

5.8.3 Tasks of the mixing module

The mixing module closely collaborates with a specialised secondary input service in
order to fulfill the following 2 tasks:

5.8.3.1 Event mixing

The mixing module superposes events, it does not perform the digitisation but delivers
superposed events to the detector dependent digitisation modules.
It calculates the number of events requested from its own configuration (Poisson random
or fixed, number of bunch crossings before and after) and asks the secondary input
service to deliver them. The digitisation modules will have to verify that the range of
delivered bunchcrossings satisfy their needs (they might throw an exception otherwise).
The way the events are superposed depends on the data tier that is treated:

• on the hit level the hits from the superposed events are simply added to the list of
hits of the main event.

• at the particle level (MC true information) it is a simple cumulation as for the hits.

• At the digi level (analysis use case), the mixing means that the digis of the sec-
ondary stream are added to the list if they do not already exist, or produce a
modified digi if a corresponding one already exists from the primary stream.

5.8.3.2 Access to the mixing information

The clients (digitisation modules in the main use case) will need to be able to identify
for each hit if it comes from the pileup or from the signal event, and to which bunch
crossing it belongs.

5.8.4 Configuration

Configurable parameter names are suggestions, they must be coherent with configura-
tion general naming.

5.8.4.1 Configuration of the mixing module

string type = "poissonian", "fixed" (default is poissonian)

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 19

double average_number (default is 17.5)
int32 min_bunch (default is -5)
int32 max_bunch (defauls is +3)

5.8.5 Configuration of the secondary input service

It is assumed that the secondary input service is able to provide randomly selected
events from the secondary stream. It might be useful for debugging purposes to be
able to ask for events selected sequentially. It might also be useful while asking for a
random sequence of events to be able to forbid that an event be selected twice. Hence
configuration should look like:

bool random (default is true)
bool no_reuse (default is true)

5.8.6 Mixing module in new framework

Since the mixing module is writing to the EventStore, it will be a EDProducer. As for the
other modules, input and the output of the mixing module is the main event, and the
result of the mixing module will be a EDProduct added into the main event.

5.8.6.1 EDProduct

The result of the mixing module is an object of type CrossingFrame. This object contains

int RunID;
int EventID;
std::vector<SimHit> signal;
std::vector<std::vector<SimHit> > bunchcrossings;
int firstcrossing; //=min_bunch

This is a first proposition, not yet finalised.

5.8.6.2 Architecture of the Mixing module

The mixing module is somewhat special since it is not driven by a single source of
events, but by 2 input streams.There will always be a distinction between the main event
stream, delivering one event after the other, and the secondary input stream delivering
events randomly on request.
The mixing module creates and manages itself the secondary input stream, not known
to the other modules.

DRAFT
1.3

5

DRAFT
1.3

5

20

5.8.6.3 Demands on the secondary input service

• A specific method of the input service will be needed, allowing to get a vector of
events the length of which has been specified by the caller.

• The events delivered must be selected inside the finite statistics of the pileup sam-
ple. If not specified otherwise, the secondary input service delivers events ran-
domly, it is its own task to guarantee maximum efficiency for this.

5.8.6.4 Example of a corresponding Parameter Set

process PROD = {

source = PoolInputService {
string fileName = "main.root"
int32 MaxEvents = 2

}

source minbias = PoolInputService {
string fileName = "pileup.root"

}

module out = PoolOutputModule {
string fileName = "CumHits.root"

}

module mix = MixingModule {
source input=minbias
string type = ‘‘fixed’’
double average_number = 14.3
int32 min_bunch = -5
int32 max_bunch = 3

}

path p = { mix, out }
}

5.9 Schedule Specifications for the HLT

This section describes rules regarding module scheduling and configuration within the
HLT.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 21

5.9.1 Concept Definitions

Reconstructor A module whose primary purpose is to perform some step of reconstruc-
tion and to place the result into the Event.

Filter A module whose primary purpose is to render a decision on the quality of an
Event, based on the EDProducts in the Event.

Path The user’s expression of requirements regarding which modules (including their
configurations) make up a single high-level trigger.

5.9.2 Example Problem

The English description of the problem should go into the use cases section.

We consider the problem setting up a HLT program using two triggers:

1. a top–muon trigger (tµ), which looks for a high-pT muon and several jets, and

2. a top–electron trigger (te), which looks for a high-pT electron and several jets.

The tµ trigger uses jets from the midpoint cone algorithm, and the te trigger uses jets
from the kT algorithm.

5.9.2.1 Top (muon) trigger: tµ

This trigger requires tracks from a specific algorithm (module B1), which in turn requires
unpacking the tracking raw data (module A). It also requires jets from the midpoint cone
algorithm (module D), which in turn requires unpacking calorimeter data (module C).
Finally, it requires muons (module F), made using tracks from B1.

5.9.2.2 Top (electron) trigger: te

This trigger requires tracks from a specific algorithm (module B2), which in turn requires
unpacking the tracking raw data (module A). It also requires jets from the kT algorithm
(module E), which in turn requires unpacking calorimeter data (module C). Finally, it
requires electrons (module G), made using tracks from B2 and the calorimeter data from
C.

5.9.3 An Insufficient Solution

A simple solution to this problem would be to have the user specify each independent
trigger by specifying the sequence of modules to be run, in the order in which they are
to be run:

• A → B1 → C → D → F for tµ

DRAFT
1.3

5

DRAFT
1.3

5

22

• A → B2 → C → E → G for te

This solution is inadequate because it does not convey important information that the
user knows and that could be used to compute an optimal schedule. In the case above,
this information is that the calorimeter-based modules (C, D and E) are independent
of the tracking-based modules (A, B1, B2 and F). Because they are independent, the
ordering of the calorimeter-based software and the tracking-based software implied by
the sequences above are not essential. Only the ordering within the tracking set, or the
calorimeter set, is essential.

5.9.4 A Sufficient Solution

The critical observation is that each trigger description (such as those above) can be
composed from strictly linear sequences that are independent of each other, and that
can be combined to produce the full trigger specification.

We see the need for a configuration language richer than the simple one above, that
allows specification of:

• (optionally named) sequences of configured modules, which the schedule builder
may not re-order, (because of implied dependence of later modules on the output
of the earlier modules), and

• combinations of (optionally named) independent sequences, with no implication
regarding the relative order of the constituent sequences.

Furthermore, we want the elements of a sequence to be either individual modules,
or the combinations of independent sequences.

Finally, the schedule builder must be able to read a configuration of the trigger
program written in this language, and to perform “optimizations” that do not change the
meaning of the program, but that avoid redundant execution of any module.

We can capture the essential features of this configuration language via the grammar
in Figure 1 on the facing page. The sequence operator “,” is used to express depen-
dencies between modules. It has higher precedence than the & operator, which is used
to combine the results of independent sequences. ’ConfiguredModule’ are terminal
symbols in this grammar.

A trigger job will consist of many of these TriggerTerms.

5.10 Multiple Products from One EDProducer

Many problems are arising when we consider allowing multiple objects of the same
type to be produced by a single EDProducer. The source of the problem is the fact
that the produced objects are distinguishable neither by type nor by provenance (which
describes the configuration of the producer and the “context” in which the producer was
run). Thus, to distinguish between multiple objects of the same type produced by a
single EDProducer, one is forced to look at the data of the EDProduct itself.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 23

TriggerTerm ::= PathExpression

PathExpression ::= PathExpression & Sequence
| Sequence

Sequence ::= Sequence , ProcessingUnit
| ProcessingUnit

ProcessingUnit ::= ’ConfiguredModule’
| (PathExpression)

Figure 1: The configuration grammar for scheduled event-processing applications.

The problems include:

1. Schedule validation becomes difficult. It seems to require creation of prototype
instances of the EDProducts at configuration time, so that the relevant data can be
matched (by a Selector that knows about that specific EDProduct).

2. The need to create these prototype objects limits our flexibility in having ED-
Producers announce what they make.

3. It requires that we support Selectors that look at EDProducts (and concrete sub-
classes), not just Provenances. This puts a greater demand on the authors of
EDProducers and EDProducts to create the relevant Selectors. Previous experience
leads us to believe it will be difficult to assure all EDProduct designers will produce
the appropriate Selector classes.

We propose that Selectors passed to the Event should only operate on Provenances.

When combined with the requirement that EDProducers use only the Event::get
function that returns a single EDProduct, there is a drawback to this choice. It means
that EDProducers can not make use of the output of other EDProducers that make multi-
ple instances of the same type. We propose that the solution for this is for the Provenance
to carry a user-supplied bit of data that can then be used by the Selector to identify a
single matching EDProduct. However, we expect this to be a rare case.

5.11 Access to EDProducts

5.11.1 Definitions

Event The Event is an interface through which one gains access to detector output and
derived quantities that are associated with a single collision.

Selector A Selector is a predicate used to identify interesting EDProducts. It does so
by examining the Provenance associated with that EDProduct. It encapsulates the
user’s requirements (e.g., features of interest) for products. The typical use case

DRAFT
1.3

5

DRAFT
1.3

5

24

will be to have a Selector examine a single feature and then through composition
and more complex Selector can be created.

Provenance A Provenance carries a snapshot of the data relevant to describing how an
EDProduct was built. It includes (but is not limited to):

1. Description of the configuration of the module that made the EDProduct.

2. Description of the program configuration (e.g., code version).

3. Parentage of the EDProduct (i.e., what other EDProducts were used as “inputs”
by the EDProducer that made the EDProduct).

Note that some, but not all, of this information is available at program configuration
time.

Getter A Getter provides an interface through which a single EDProduct is obtained.

5.11.2 This needs a home nearby

A note concerning selectors: In order to make selectors friendly to use, several standard
selectors are necessary. A special GetLatestCreated (implies that the order of creation is
maintained). The list used by this selector, is maintained as file-level metadata.

5.11.3 Guidelines

We believe the following guidelines are important:

1. It is convenient to allow human-readable strings (labels) to be used in the identifi-
cation of EDProducts.

2. It is critical that access using any such strings never anything other than a single
EDProduct.

3. Access to EDProducts must be type-safe, and so they must specify the (C++) type
of EDProduct to be returned. Allowing the user to obtain all objects of a type that
derive from a common specified type would complicate the interface for doing so.
We believe such use would be rare.

See also § 5.5 on page 16 on branch naming, which touches on related issues re-
garding string labels.

5.11.4 Anticipated Access Needs

We the following access methods are important. The order below does not imply an order
of importance. In each example below, the query supplies the type of EDProduct to be
retrieved. This is only a representative sample, not an exhaustive list.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 25

1. Return handles to all EDProduct objects of a given concrete type. This can return
multiple handles. If no objects are found, throw an exception.

2. Return a handle to the one EDProduct object that has a given EDP id. If there is
none, throw an exception.

3. Return a handle to the EDProduct of a specific type, made by a particular recon-
struction module, giving the full specification of the module’s configuration.

In addition to these basic queries, we also need to support “modifiers” for queries—
that is, the ability to select the EDProducts to be returned by logical “and”-ing of the
queries above with the following additions.

1. Restrict the EDProducts returned by specifying a “process name”.

2. Restrict the EDProducts returned by specifying a “release number”.

3. Restrict the EDProducts returned by specifying some part of the Provenance in-
formation that must also be matched—for example, to obtain all the results of
midpoint-cone jet algorithms, disregarding the remaining details of the configura-
tion information.

4. Return the EDProducts returned by specifying some feature (a value or range of
values) of a parameter in the ParameterSet of the product’s Provenance. For ex-
ample, to obtain all the results of midpoint-cone jet algorithms that have a cone
radius between 0.5 and 1.0.

Note that many EDProducts contain collections of objects, e.g., tracks, jets, or muons.
The Event interface only supports obtaining entire EDProducts. It does not directly
support obtaining subsets of elements contained within and EDProduct.

5.11.5 Proposal

We propose that EDProducts should be accessed only through the Event.

We propose that all access methods will “match” only the most derived type of the
EDProduct requested—that is, the type must be an exact match, not a match to a base
class. One can not make any single “get” to obtain all EDProduct instances of types that
derive from a common base.

We propose the Event has three member templates for retrieving EDProducts. Each
is parameterized on the type of the EDProduct to be retrieved.

1. getBySelector takes a Selector object and returns the single EDProduct that has
Provenance that matches the Selector. If there is not exactly one such match this
get throws an appropriate exception.

2. getByLabel takes a string label and returns the unique EDProduct of the appro-
priate type with a Provenance with the matching label. If there is not exactly one
such match this get throws an appropriate exception.

DRAFT
1.3

5

DRAFT
1.3

5

26

3. getByType returns the unique EDProduct of the appropriate type. If there is not
exactly one such match this get throws an appropriate exception.

4. getMany takes an optional Selector and returns all the EDProduct instances of the
appropriate type that match the Selector. EDProducers shall not use getMany.

5. getManyByType returns all the EDProduct instances of the appropriate type. ED-
Producers shall not use getManyByType.

5.11.6 Consequences

We propose that the ParameterSet that configures an EDProducer must have a string
parameter named “label”. This will the the unique label assigned to every EDProduct
created by the EDProducer instance configured with that ParameterSet.

At module configuration time, the uniqueness of these labels—for EDProducts to be
created by the current program—will be verified.

Because it is possible for the input file to contain EDProduct instances with labels
that will collide with those of EDProducts to be generated in the current program, the
system must have a way to deal with such collisions.

We propose that an attempt to insert a new EDProduct with label x into an Event that
already contains an EDProduct of that type and label x result in an exception throw. This
assures that the Event never gets into a state in which it contains two EDProducts of the
same type that have the same label.

In order to make it easy for users to run a reconstruction program that replaces
“old” versions of some EDProduct with “new” versions of those EDProduct, we propose
there exist an “EDProduct dropping module”. This module should be user-configurable,
so that it is easy for the user to specify which EDProducts are not to be read from the
input. This does not imply that all EDProducts must be read from disk on input. Rather,
it is possible that this “module” work by indicating to the file-reading mechanism that a
given EDProduct “branch” is to treated is if it did not exist.

Commentary from: Marc and Jim

We think the rest of this section should be removed.

There is more than one variety of event query.

• In EDProducers, the query functions can return only exactly one product. If the
requested product can not be returned, and exception shall be thrown.

• In an analysis module, an addition query interface is available. These queries may
return multiple matching products.

We have not decided what happens if a failure during reconstruction occurs. How
does the data indicate that an algorithm was tried, but failed to complete? Per-
haps we can make the ROOT branch entry contain a 2-tuple, consisting of the con-

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 27

structed object (if any) and an error report object (if any). Only one of the two items
would actually appear in any entry.

5.12 Insertion of EDProducts

See § 5.11.1 on page 23 on page 23 for the definitions of important terms in this section.

The question we answer here is: What code developers of EDProducers write to put
the EDProducts they create into the Event?

We have two proposals, and need to select which one we will choose for further
design.

5.12.1 Solution One

Data products are allocated and inserted through the Event.

The Event contains a put member template. put is parameterized on the type of ED-
Product and is used to allocate an object that will automatically be placed permanently
into the Event when the EDProducer successfully completes its task.

Each EDProducer that make more than one EDProduct will invoke put for each of the
EDProducts it generates. All the EDProducts will be successfully added to the Event, or
none will be added.

A Provenance object is added to the Event by the framework during the final commit.
The user is not responsible for handling this information.

The main goal of this solution is to mimic the procedural model that we (Jim and
Marc) have observed to be the favorite of most authors of reconstruction code.

5.12.2 Solution Two

EDProducts are allocated dynamically and returned by the produce method of the ED-
Producer. Ownership of the created products is passed during the return.

The framework handles inserting the created products into the Event. A Provenance
object is added automatically by the framework. The user is not responsible for handling
this information.

The main goal of this solution is to allow the system to determine, at compile time,
what EDProduct types are created by a given EDProducer by working with the return
type of the produce function.

Thus the function type of produce is different for each kind of EDProduct.

DRAFT
1.3

5

DRAFT
1.3

5

28

5.12.3 Comparison

Solution 1 has “parallelism of interface”. The user’s model of the Event as repository of
EDProducts is respected: a user obtains input EDProducts directly from the Event and
inserts newly made EDProducts directly into the Event. Solution 2 lacks this parallelism.

In Solution 1, the transactional model is less obvious for EDProducers that make
more than one EDProduct instance. The user’s code might have the put for the two ED-
Products widely separated. In Solution 2, the two objects are clearly returned together.
Since the transactional model assures that both are committed or neither is committed,
the behavior in both cases is the same.

The Event is already a heterogeneous collection of EDProducts. In Solution 1, we
make use of this directly in the interface of the Event for both all get templates and for
put. In Solution 2, we do not benefit from this, because the user does not put results
directly into the Event. We see two different paths to follow:

1. Introduce a second heterogeneous collection of EDProducts to be the return type of
the produce function, so that each function can have the same return type. This
seems to violate the purpose of Solution 2, since it is no longer possible to deduce
the type of the returned EDProducts from the type of the produce function.

2. Introduce several member templates (e.g., produce, produce2, . . .), each of which
has a different return type.

We expect that most EDProducers will insert a single EDProduct into the Event. Com-
plicating the mechanism by which this is done for the common case, in order to support
the rare case of multiple insertions, is a disadvantage.

5.13 Comparison of the RecAlgorithm System to
EDProducers

In this section, we compare the initialization of EDProducers and RecAlgorithms.

5.13.1 What is an “algorithm”?

In the RecAlgorithm system, an algorithm objects are “entities that create new resulting
objects or transform input objects”. Algorithms in general

• have a state (or configuration),
• have some inputs, some of which are the results of other algorithms.

In the EDProducer system, we distinguish between

• EDProducers, the top-level, reconstruction-developer written, framework compo-
nents that perform a quantifiable step of reconstruction, by creating and storing
persistable data in the Event, and

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 29

• the much looser category of “algorithms”, that can perform smaller steps of recon-
struction, and that may be composed to form an EDProducer.

The EDProducer system has no formal notion of “algorithms” as components; the
author of an EDProducer is free to use any internal organization suitable for his task.

5.13.2 Who are the “users”?

We find it useful to distinguish between two groups of “users”:

• (algorithm) developers, who write reconstruction code (but are users of the core
infrastructure), and

• end users, who configure and run an event-processing program.

Of course, an individual may play both roles, at different times.

5.13.3 Coupling of algorithm system to configuration system

In the RecAlgorithm system, the algorithmic objects are tightly coupled (though inher-
itance of implementation) with the parameter set (and other configuration) objects. It
is not possible to make use of an algorithmic object without the presence of the full
configuration system.

In the EDProducer system, an “algorithmic object” (i.e., a component with an ED-
Producer) does not need to have any interaction at all with the ParameterSet object, nor
with the rest of the parameter set system. The algorithm developer is free to decouple
the algorithm objects from the parameter set system, if he so wishes. Because the Para-
meterSet system allows nesting of ParameterSet objects to arbitrary depth, the developer
is free to make use of ParameterSets in configuring nested algorithms.

5.13.4 Algorithm names

In the RecAlgorithm system, each algorithmic object has a developer-assigned name; the
examples show these names compiled into the code. The scope of these names is the
entirety of ORCA; each algorithm name must be unique within this scope.

In the EDProducer system, the approximate equivalent to this algorithm name is the
combination of EDProducer class name and instance label. The class name is of course
unique within any program. The scope of an instance name is a single running process;
the name must be unique within that scope. The instance label is a configurable para-
meter assigned (by the end user) at runtime. See elsewhere in this document for the use
of the instance label.

5.13.5 Version identification

In the RecAlgorithm system, each algorithmic object has a version identifier, expressed
as a string assigned by the algorithm developer in the code.

DRAFT
1.3

5

DRAFT
1.3

5

30

In the EDProducer system, the approximate equivalent is the CVS tag for the entire
code-base used to construct a release; this is provided automatically, and is recorded in
the created event data.

Developer-updated version information may be neglected by the developer, and is not
certain to be of the “accepted format”. Enforcement of standards is left up to inspection
of releases. Automatic handling of the version updating can not be neglected, and is
assured of uniformity.

5.13.6 Types of parameters

In the RecAlgorithm system, the ParameterSet supports types double, int, string, and
bool. Additionally, the RecConfig that contains a ParameterSet can also contain addi-
tional RecConfigs.

In the EDProducer system, the ParameterSet supports these types, as well as vectors
of these types. This ParameterSet also directly supports nesting of ParameterSets, and
vectors of ParameterSets.

5.13.7 Handling of doubles

In the RecAlgorithm system, each parameter of type double is associated with a tolerance.
Such parameters are compared for equality using their tolerances.

In the EDProducer system, parameters of type double are compared directly. Note
that such parameters are read, written, and compared—they are not used in calculation,
and so no troubles with inexact representation of calculated quantities arise.

We note that use of tolerances in “equality” comparison cause the “equality” compar-
ison to fail to satisfy transitivity. Failure of transitivity may lead to unexpected results.

5.13.8 Default parameters for algorithms

In the RecAlgorithm system, each algorithmic object is required to have a default value
for each parameter compiled into the source code.

In the EDProducer system, to aid in tracing the behavior of reconstruction, default
values of parameters compiled into the source code are expressly forbidden.

5.13.9 Calibration data in algorithm configuration

In the RecAlgorithm system, one of the parts of a RecConfig object is a RecCalibrationSet.

In the EDProducer system, calibration data are not considered to be part of the algo-
rithm configuration system. They are handled as separate problems, and are decoupled.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 31

6 Design of the Core Infrastructure

6.1 Overview

The main elements of the core infrastructure are:

1. the classes Event and EventPrincipal,

2. the “module” base classes EDProducer, EDFilter, Mixer, and OutputModule,

3. the classes ScheduleBuilder, ScheduleExecutor, and the variety of “worker” classes,

4. the ParameterSet class and its related classes,

5. the Framework class.

6.2 The Event

There will be only one Event class.

Purpose: Responsible for managing lifetimes for each EDProduct it contains. Man-
ages relationships between EDProduct and metadata. Provides access to event data
(EDProducts) for any consumer of event data. Allows communication between “mod-
ules.”

A single Event instance corresponds to the detector output, reconstruction products,
and/or analysis objects from a single crossing or the simulation of a single crossing.

Event is a concrete class.

It is possible to allow different Event interfaces, or merely different member func-
tions, some of which perform ROD, and some of which do not.

• Any EDProduct should be immutable after insertion into the Event (see § 6.3.3 on
page 37).

• The ParameterSet provenance of input objects to a particular EDProduct should
survive the dropping (dropping means not writing to the output file) of the original
input object.

The Event will use methods of the Selector class (see § 6.5 on page 38) to search for
EDProducts matching a given criterion.

An ancillary class of the Event will keep track of the full invocation sequence

1. EDProducer::produce,
2. Event::make,
3. Event::get.

This information will be used to build a provenance “record” to be associated with the
EDProduct.

DRAFT
1.3

5

DRAFT
1.3

5

32

6.3 EDProducts

Purpose: The basic unit of event data managed by the Event.

EDProduct is the base class for all objects inserted into the Event. Derived classes are
also referred to as EDProducts. Each instance of such a class represents a component
of an event, and must be capable of persistence.

Each EDProduct instance has an ID that is unique within the Event, and which is
assigned by the Event during its insertion into the Event.

A “map” of the EDProduct instances for an event is kept in the event store.

Commentary from: Luca Lista

Using a generic approach may shield the end user from exposure to the EDProduct
class, allowing the use of any type, not only EDProduct subclasses. This is done, for
instance, in BaBar using the ProxyDict technique [2].

For “bare root” access using native types (or an STL container of native types) instead
of specialized types could also be an advantage.

This is actually already implemented in Marc’s prototype, where the class template
EDProduct<T> inherits from EDProductBase.

Commentary from: Lassi Tuura

My understanding was that this was a design choice, not a technical limitation (i.e.,
users should be aware of EDProduct, and nothing else but EDProduct is allowed into
the store).

After all we started out from a whole stack of proxies.

An EDProduct that needs to be readable by bare ROOT may contain only built-in
data types (e.g., float, double, int), and must have the same shape in its transient and
persistent forms. The data members of such a class should have meaningful names
and allow simple use. Those EDProducts that need not be readable by bare ROOT (e.g.,
raw data) may be packed and may or may not require additional software in order to be
unpacked for browsing.

Each class that represents an EDProduct should be as simple as is feasible (with
respect to the four usage patterns we have documented). In particular, usage pattern
4 objects (i.e., objects that need external data to be usable) should be used only when
necessary (for functionality or performance).

EDProducts are often collections, but they are not required to be. They should not be
small.

6.3.1 Common Bookkeeping Information

There are several purposes for saving bookkeeping information:

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 33

1. To allow users to identify the EDProduct they want by identifying

a) the type of the EDProduct

b) the name of the “module” instance that created it—this is not merely the name
of the class of that module; it is a name, unique within that executable, that
identifies a particular “module” instance

c) the configuration of the “module” that created it

d) the calibration data used by the “module” that created it

e) the processing step that created it.

f) the release of the software that created it.

This may not be an exhaustive list.

2. To provide summary information that the user can take elsewhere to look at the
actual parameter sets/calibrations/etc.

Sufficient bookkeeping information should be stored to allow re-production of the
same EDProduct instance. This is not yet resolved for simulation products; it may be
sufficient to reconstruct the entire event. There may also be a problem involving re-
gional reconstruction; this seems resolvable by identifying as part of the algorithm the
description of the region on which it acted.

This bookkeeping information will be used by the Selector class (see § 6.5 on page 38).
Some selectors will use all the information to make “perfect matches.” Other selectors
can use some of the information, and then possibly match more than one EDProduct.

Each EDProduct instance must be associated with its bookkeeping information.

6.3.2 Rules for defining an EDProduct class and its components

Restrictions are imposed on each EDProduct and its components (i.e. members or base
classes) of an EDProduct in order to assure:

1. persistency: Persistence capability

2. browsability: Browsability in a ROOT tree

3. modularity; Independence of the EDProduct or component from the algorithm that
creates it, and from all other such algorithms

4. reproducibility; Reproducibility of results

5. simplicity; Avoiding unnecessary confusion

6. implementation: An implementation choice.

DRAFT
1.3

5

DRAFT
1.3

5

34

Each restriction is justified by one or more of these criteria, which are given before
each restriction.

All classes used as an EDProduct or as a component (i.e. member or base class) of
an EDProduct must meet the rules for an EDM compliant class. Transient components
are not exempted. These rules are:

1. reproducibility; An EDM compliant class may not contain a static data member,
unless the static data member meets all of these requirements:

a) It is declared const.

b) It is of integer type (e.g. int, unsigned, long), or a struct containing only
integer types.

c) It is initialized only with compile time integer constants (e.g. 4, -12).

2. reproducibility; A member function of an EDM compliant class may not contain a
static data object, unless the static data object meets the same requirements
that a static data member must meet (see previous item). n

3. reproducibility; An EDM compliant class may not contain a data member that is a
set, map, multiset, or multimap where the key is or contains a floating point type
(e.g. float, double) or a pointer.

4. modularity; Every EDM compliant class (or its template) must be defined in an ”EDM
compliant header file” (see below).

5. modularity; An EDM compliant class (or its associated header and source files) may
not contain or depend on the algorithms used to create the class. A class used
to implement such an algorithm, and the file defining it, is a priori not an EDM
compliant class.

All classes used as an EDProduct or as a non-transient component of an EDProduct
must meet the additional rules rules for an persistence capable EDM compliant class.
These rules are:

1. reproducibility; A persistence capable EDM compliant class may not contain a non-
transient mutable data member.

2. reproducibility; A persistence capable EDM compliant class may not contain a non-
pointer transient data member, unless that data member can be deterministically
initialized in every constructor of the class using nothing other than the values of
persistent members of the class.

3. reproducibility A persistence capable EDM compliant class may not contain a tran-
sient data member that is a C++ pointer, or a container of C++ pointers, unless
management or architect approval is received, AND all the following requirements
are met:

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 35

a) No pointer may at any time point to anything external to the EDProduct in
which it is contained.

b) Each pointer is deterministically initialized in every constructor of the class
(possibly to 0 or an empty container).

4. reproducibility browsability; A persistence capable EDM compliant class may not
contain a non-transient data member that is a C++ pointer, or a container of C++
pointers, unless management or architect approval is received, AND the following
requirements are met:

a) The type of each pointer must be that of a pointer to a class. Pointers to
built-in types or pointers to pointers are not permitted.

b) Each pointer must be the sole owner of the object to which it points. In other
words, each pointed to object must be created either when the pointer is cre-
ated or when the pointer is assigned, and each pointed to object must be
destroyed either when the pointer is destroyed or when the pointer is zeroed
or reassigned.

c) If a non-transient T* is used, all the rules for components of an EDProduct
apply to the class T and to the actual class of the pointed to object.

There are two reasons that the user might wish to use a pointer to an object rather
than to the object itself:

a) If the object need not be present, a zero pointer can be used to indicate that
no object is present.

b) To implement polymorphism. However, polymorphism destroys browsability
in that only the portion of the pointed to object corresponding to the declared
pointer type may be browsed by ROOT. For this reason, we strongly discourage
designs that use polymorphism in persistence capable objects.

5. reproducibility browsability; A persistence capable EDM compliant class may not
contain an std::auto_ptr, boost::shared_ptr, pool::Ref, ROOT TRef, or any
other ”smart” pointer, with the following exception:

a) boost::value_ptr<T> is permitted, where T is a class (not a built in type).
The use of boost::value_ptr<T> instead of a T should be used only when the
ability of boost::value_ptr<T> to specify the absence of a T is needed. When
a boost::value_ptr<T> is used, all the rules for components of an EDProduct
apply to class T. Note that boost::value_ptr<T> has value semantics, so
copying it copies the T object.

Note that the EDM will provide one or more persistence capable EDM compliant
class that implements references or vectors of references.

6. persistency: Every persistence capable EDM compliant class must contain a default
constructor.

DRAFT
1.3

5

DRAFT
1.3

5

36

7. persistency: Every persistence capable EDM compliant class must have a data dic-
tionary.

The following additional rules apply to each class used as an EDProduct, but not
necessarily to a class used only as a component of an EDProduct: (Note that the great
majority of EDProducts are collections. For example a Jet is not an EDProduct, but a
collection of Jets is an EDProduct.)

1. implementation: Every class used as an EDProduct must publicly inherit from the
class EDProduct. The inheritance need not be direct. (see § 5.2 on page 13).

2. modularity; A class used as an EDProduct or any of its base classes must not
directly inherit from more than one base class, not counting any base class that is
a pure interface class (i.e. has no data members, either directly or by inheritance).
Exceptions to this requirement may be granted by management or the architect.

3. persistency: The data dictionary entry for a class used as an EDProduct requires
a unique ID. (This requirement may be removed when and if POOL fixes the the
problem that causes the ID to be needed in some cases.)

The rules for an EDM compliant file (header or source) are as follows:

1. simplicity; An EDM compliant header file must have the same name (with .h ap-
pended) as (one of) the classes or templates defined in the header file, other than a
nested class or template.

2. simplicity modularity; If a class defined in an EDM compliant header file has any
member functions or associated non-member functions that are declared but not
defined in the header file in which the class is defined, these functions, if defined,
must be defined in a single associated EDM compliant source file (see below). The
EDM compliant source file must have the same base name as the corresponding
header file, with .cc appended, and be in the same package as the header file.

3. modularity; An EDM compliant file must not define a class or template that is not
used as an EDProduct or a component of an EDProduct.

4. modularity; An EDM compliant source file must contain an #include of its associ-
ated header. An EDM compliant header file must contain a #include of any header
needed to fully define a direct component of any class or template defined in the
header file. Any such included header must also be an EDM compliant header file.
Other than those headers, the only permitted #includes in an EDM compliant file
are:

a) C++ standard headers, as needed (e.g. <vector>)

b) C standard headers, but only if no comparable C++ header exists

c) Headers defined in the framework, boost, CLHEP, and other permitted external
or internal low level packages, as needed. The complete list of such permit-

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 37

ted packages will be expanded as needed. POOL, SEAL, or ROOT headers are
strictly forbidden.

d) Any headers that contain only forward declarations.

An #include of any other files are forbidden. Note that any headers defining algo-
rithms for EDProduct creation may NOT be included in the headers or source files
defining the EDProduct or any component.

The rules affecting packages (i.e. shared libraries) are as follows:

1. modularity; More than one EDProduct or component (i.e. EDM compliant class)
may be defined in the same package. However, any package defining one or more
EDM compliant class may not include any definitions of non-compliant classes (e.g
algorithm classes).

2. modularity; The data dictionary for a CMS defined non-templated persistence capa-
ble EDM compliant class must be defined in the same package in which the class
is defined. The data dictionary for a CMS defined templated persistence capable
EDM compliant class must be defined in the same package in which the class is
instantiated. This implies that every persistence capable templated class must be
explicitly instantiated in one well-defined package.

3. modularity; If X is an persistence capable EDM compliant class, data dictionaries for
classes such as std::vector<X> and boost::value_ptr<X>, if needed, must be
defined in the same package as the data dictionary for class X. It is recommended
that a dictionary for std::vector<X> be defined for every persistence capable EDM
compliant class.

6.3.3 Rules for modification of an existing EDProduct

• An EDProduct instance should be immutable once it is it is made persistent.

Despite the immutability of an EDProduct, there are two ways in which an EDProduct
in the Event may be augmented:

• extensible collections: in which new objects may be added to collections already in
the Event.

Commentary from: Brown/Kowalkowski/Paterno

We think that extensible collections are not needed. The functional equivalent can
be provided by allowing “view” objects, which can carry information about objects
in another collection, and which support (external) iteration over the full set of
objects presented in the view.

DRAFT
1.3

5

DRAFT
1.3

5

38

• decoratable objects in collections: in which a new EDProduct is added to the Event
and is associated with with an EDProduct already in the Event.

In addition, both “puffing” and “refitting” will be supported.

Puffing means expanding existing data in an EDProduct, using no event information
from outside that EDProduct. Outside non-event information (e.g., detector geometry)
used in creating the original EDProduct may be reused.

Refitting means generating a new EDProduct from an older one, using new and dif-
ferent information from outside the original EDProduct.

6.4 Provenance

A Provenance serves to collect the relevant information describing how a given EDProduct
was created. Each EDProduct is associated (in an Event) with one Provenance.

6.5 Selectors

Selectors provide the mechanism by which one specifies what pieces (EDProducts) of an
event are of interest. They are the “query mechanism” of the EDM.

The Event uses get methods of the Selector class to search for EDProducts match-
ing a given criterion. Internally, the get methods use the bookkeeping information to
determine which EDProducts are a match.

In its main get method, match(const Handle<EDP>& edp), the Selector will search
in the event store for all EDProduct instances matching Selector.

Event also supports a get(Handle<EDP>& edp, const Selector& s) method that
will produce an error unless there is one and only one EDProduct instance matching s.

If explicit scheduling is being used, the get methods only search the existing event
store. If explicit scheduling is not being used, the get methods will find each matching
EDProduct whether or not it is already in the event store, invoking the appropriate ED-
Producers as needed.

Commentary from: Luca Lista

6.5.1 Different selection of event products

The most general selection should provide as result more handles to selected EDProducts.
A possible interface could be:

get(std::vector<Handle<EDP>& handles, const Selector& d)

Nonetheless, it may be frequent to request for a single product using a named selec-
tion, that could be called AliasSelector :

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 39

AliasSelector sel("GoldenElectrons");
Event & ev;
Hangle<EDP> & ele;
ev.get(ele, sel);

The AliasSelector object should be instantiated only once at the initialization of the
framework module that hosts the above code

As alternative interface, the above query could be performed using directly a charac-
ter string:

ev.get(ele, "GoldenElectrons");

This could introduce a possible performance reduction due to the search by string
match. On the other hand, it is likely that the object of the class AliasSelector should
become a configurable object, whose actual value has to be set via configuration scripts.
In that case, the instantiation a at the initialization of the module would be mandatory,
and this would make the interface ev.get(ele, sel);, with no string search, more
natural.

6.6 Modules

The purpose of a module is to encapsulate a unit of clearly defined event-processing
functionality, in an independently testable and reusable package.

6.6.1 General Characteristics

Here are some characteristics of Modules:

Modules is the generic term for all “workers” in the framework. Not all modules have
the same interface.

Modules are scheduled by the ScheduleBuilder, and invoked by the ScheduleExecutor.
Each Module instance is configured with a ParameterSet.

Modules must not interact directly with (i.e., call) other modules.

Only Modules are “configurable.” An internal algorithm is configured by “percolating”
ParameterSets to the algorithm, by the Module that contains the algorithm.

6.6.2 Types of Framework Modules

Here is a (possibly non-exhaustive) list of framework module types:

• event data producers—reconstruction modules
• mixing
• output
• filter

DRAFT
1.3

5

DRAFT
1.3

5

40

• analyzers (read-only)

Note that input provided by a service, not by a module—see 6.6.5 on page 42.

6.6.3 EDProducers

Figure 2 shows a coarse view of the processing flow for the execution of a single ED-
Producer. The main purpose of this diagram is to demonstrate the call sequence, so
function call arguments and object types are not present. In addition, the method
names are only meant to denote the types of actions that occur during the calls. The
user code never interacts directly with the actual event object (depicted in the diagram
by “ep”). The Event object lives only as long as the call to the module and its primary
purpose is to track objects retrieved from and created by the Module. Upon successful
return from the user code, the Event generates all the proper provenance information
for the newly formed EDProducts and placed them all into the actual event object. If
an exception is thrown anytime before this final commit to the event object, no new
EDProducts are recorded.

Figure 2: The flow of control for the execution of a single EDProducer object.

The only service of an EDProducer is to produce EDProduct instances and placing
them in an Event. This service is performed by its produce(Event& ev) method.

On invocation a transaction is started.

The EDProducer will create empty EDProducts by asking the Event to make them

Handle<EDP> it = ev.make<EDP>();

At this point, the EDProducer is ready to populate this EDProduct with the real re-
constructed objects.

If its algorithm requires information from the event, it will get it from the event-store
using its get(vector<Handle<EDP2> >& edps, const Selector& s).

The following interface is tentative. We have not resolved all the issues relating to the
responsibilities of the various components. Return types are not yet indicated.

Interface of a EDProducer.

??? beginRun(RunRecord&);
??? beginLumSec(LumSecRecord&);
??? processEvent(Event&);
??? endLumSec(LumSecRecord&);
??? endRun(RunRecord&);

We also expect:

• The Event will provide access to the LumSecRecord to which it belongs, and to the
RunRecord to which it belongs.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 41

• the LumSecRecord will provide access to the RunRecord to which it belongs.

These functions all correspond to “run state transitions”.

There may also be other sorts of transitions, not corresponding to run state transi-
tions:

• beginning and ending of a file,

• beginning and ending of a job,

• other to be discovered.

These transitions are program state transitions.

6.6.4 Mixing Modules

A MixingModule takes in a sequence of const Events and merges corresponding data ob-
jects from each into a single output merged Event that is passed back to the framework.
This is its only purpose.

6.6.5 Input and Output Modules

InputModule is an abstract base class.

The InputModule class provides the “interface” to read objects from the “I/O system.”
A “Database” model will be used, that is, specific EDProduct instances will be explicitly
retrieved.

We discussed how the InputModule uses the data management system to deliver
requested events to the “user,” who specifies things like a “process step,” “code version,”
etc. The data management system resolves this to a set of files, but that isn’t enough—
because the user wants only some of the events in those files. The data management
system could also deliver an “event catalog” that says what events are to be included.
We have agreed that an event catalog is important.

CDF notes that a system that requires strict file delivery order causes trouble. Such
an ordering can avoid thrashing on “conditions data.” But the cost has been large for
CDF. Creation of an event directory reduces the need for strict file delivery ordering.

Event directories can live either in the data files (such as an AOD) or in their own
files. Different event directories can refer to the same data files. It seems critical that a
given process use whatever event directory the user “points at.”

DRAFT
1.3

5

DRAFT
1.3

5

42

6.7 The ParameterSet System

6.7.1 ParameterSets

Some of the elements in a framework application can be configured at run-time by the
user. All such elements will be configured by a common parameter set system.

A ParameterSet contains a collection of name/value pairs, and provides type-safe
access to them. The contents of a ParameterSet are uniquely identified by a Parameter-
Set id. The contained values can be anything from the following list:

• bool
• int
• std::vector<int>
• unsigned int
• std::vector<unsigned int>
• double
• std::vector<double>
• std::string
• std::vector<std::string>
• ParameterSet
• std::vector<ParameterSet>

It is important to note that parameter sets can be nested.

ParameterSets used for official production must be registered in a central database.
IDs for such parameter sets must be distinguishable from IDs associated with parameter
sets not registered in the central database.

ParameterSets can also be local; they then are associated with an ID unique within
the data file. Local ParameterSets are stored in the same file as the Events with which
they are associated.

An entire executable should be configured using a single ParameterSet, which con-
tains the many ParameterSets used to configure the Modules within that executable.
Each module should be configured with a single ParameterSet.

There should also be a method of managing untracked parameters within parameter
sets. These are similar to tracked parameters in how they are presented to the user, but
they do not contribute to the parameter ID, and are not tracked in any repository. They
are to be used to carry information that does not need to be tracked in the bookkeeping
system. One example of such information is the verbosity of the logging level used
when running a program. Untracked parameter sets should not be used to provide any
configuration information that affects the physics of reconstruction results.

6.7.2 Identifying Parameter Sets

There will be a central authority to store those ParameterSets used in official process-
ing. Each program will have access, in addition, to a local repository of ParameterSets,

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 43

in the event data files themselves. This is needed, in part, to allow use of reconstruc-
tion code without contacting the global authority—for purposes other than official event
processing.

ParameterSet ids are calculated from the contents (more precisely, from a string gen-
erated from the contents) of the ParameterSet by the MD5 algorithm, giving a 16-byte
identifier. This means if two IDs are different, the parameter sets to which they refer
are surely different. If two ParameterSet ids are the same, then it is very likely, but not
100% certain, that the ParameterSets to which they refer are the same.

Unanswered Question 1: Is MD5 suitable for use as ParameterSet id?

The MD5 algorithm, proposed as the means of generating a Parameter-
Set id from the contents of a ParameterSet, does not guarantee that dif-
fering parameter sets will have different ParameterSet ids. There is a non-
zero (albeit very small) probability that two different parameter sets will
yield the same MD5-based ParameterSet id. Is the degree of certainty of
non-collision of two MD5 checksums sufficient for CMS?

The MD5 algorithm is described in RFC 1321, available at
http://www.ietf.org/rfc/rfc1321.txt. A paper announcing how this
algorithm was “cracked” is available [3]. This “cracking” is not of impor-
tance to CMS; we are not looking for cryptographically secure identifica-
tion. We are concerned only with accidental collisions.

6.7.3 User Creation of Parameter Sets

A set of tools (such as a GUI parameter set editor) will be provided. Such tools are
needed to make creation and manipulation of ParameterSets simple.

These tools will not be available in the first release of the parameter set system.

6.7.4 Informal ParameterSet language specification

The configuration language used in the creation of ParameterSet objects has elements
that map into framework concepts such as process (a single job) and module. These
domain-specific elements allow for better validation to be done while parsing and allow
the user to better express what the intended behavior of a job is. Figure 3 on the next
page shows an example of the expression of a job in the configuration language.

Within the program, each section labeled with keywords module, source, or Para-
meterSet is turned into a ParameterSet object. The process section is special because
of the additions of the sequence and path types, which are not part of the ParameterSet
interface. A process can contain any number of path and sequence statements.

The block keyword indicates a collection of parameters that are made available for
inclusion in any other section that will be mapped into a ParameterSet.

The using keyword indicates that names and values from another ParameterSet or
block will be introduced (pulled into) the current ParameterSet. This facility allow one

DRAFT
1.3

5

DRAFT
1.3

5

44

process myjob = {
source = FileBasedInputService{

untracked string fileName = ‘‘myFile’’;
untracked bool buffered = true;

}
block Common = {

untracked int debug_level = +1;
untracked string unknown_exception_action = ‘‘die’’;
untracked string user_exception_action = ‘‘skip’’;
untracked string framework_exception_action = ‘‘skip’’;
double radius = 0.4;

}
ParameterSet splitmerge05 = {

double frac = 0.5;
}
module cone5 = MidpointJetProducer {

using Common;
ParameterSet split_merge = splitmerge05;
double radius = 0.5;

}
module cone7 = MidpointJetProducer {

using Common;
double radius = 0.7;

}
module jetanalyzer = JetAnalyzer {

string wanted = ‘‘cone7’’;
}
module otherthing = SomeModule {...
}
module jetoutput = PoolOutputModule {

string fileName = ‘‘MyOutputFile’’;
}
module all = PoolTriggerOutputModule {

vstring terms = {‘‘term1’’, ‘‘term2’’};
}
module some = PoolTriggerOutputModule {

vstring terms = { ‘‘term1’’ };
}
sequence cones = { cone5,cone7 };
path term1 = { cones,jetanalyzer,jetoutput };
path term2 = { otherthing };
endpath = {all,some};

}

Figure 3: Elements of a job configuration

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 45

to inject values into a ParameterSet from another. If the same type and name are found
in the outer scope and inner scope, the outer scope takes precedence and overrides the
value from the inner scope.

A primary source must always be present, so it is implicitly assigned the name
“main input”.

6.7.5 ParameterSet object interface features

The interfaces outlined in Figure 4 on page 46 illustrate essential features; the exact
names and signatures are left to the library designer.

class ParameterSet {
public:
// retrieve value of tracked type XX with name name
// need one for each of the supported types and for vectors<YY>
YY getXX(string name) const;

// same as previous gets, but for untracked values
// here default values are allowed
YY getXX(string name, YY default_value) const;

// inject a name/value pair into this parameter set,
// need one insert for each type XX and vector<XX>
void insert(string name, XX value, bool is_tracked);

// an important feature of the next method is getting
// a list of names given a specific type, either by the
// keyword name or C++ type or name
vector<string> getNames(string of_this_type) const;

};

Figure 4: Essential elements of a pset and process objects

The Path object returned from the Process shall contain information consistent with
the grammar specified in section 5.9.4 on page 22.

6.7.6 Mapping from input grammar to ParameterSet objects

Elements of the configuration file language are translated into ParameterSet objects,
according to the following rules.

Translation from sections of a configuration file named module, source, and process
requires adding new fixed name and type parameters to ParameterSets representing
these things. Below are three of these mapping expressed in the parameter set language.

DRAFT
1.3

5

DRAFT
1.3

5

46

// initial specification
module cone5 = MidpointJetProducer {

using Common;
double radius = 0.5;

}

// maps to
ParameterSet cone5 = { /* jbk - is this pset name correct? */

string module_label = ‘‘cone5’’; // check name
string module_type = ‘‘MidpointJetProducer’’; // check name
double radius = 0.5;
untracked int debug_level = +1;
untracked string unknown_exception_action = ‘‘die’’;
untracked string user_exception_action = ‘‘skip’’;
untracked string framework_exception_action = ‘‘skip’’;

}

Figure 5: Mapping from module section to ParameterSet

// initial specification
source = FileBasedInputService {

untracked string fileName = ‘‘myFile’’;
untracked bool buffered = true;

}

// maps to
ParameterSet main_input = { /* jbk - is this pset name correct? */
string module_label = ‘‘main_input’’;
string module_type = ‘‘FileBasedInputService’’;
untracked string fileName = ‘‘myFile’’;
untracked bool buffered = true;

}

Figure 6: Mapping from source section to ParameterSet

Notice that the sequence statement in the process mapping in figure 7 on page 48
was incorporated into the paths themselves.

6.7.7 Event mixing problem

There are details in this section that still need to be finalized. An example is that of an
input source that can be asked to cough up more than one event in one invocation. We
currently do not have such an interface. The information below indicates that a source
used for mixing is really the same type of thing as a standard job input source. This is not

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 47

// initial specification
process myjob = {

source = FileBasedInputService {...}
block Common = { .. } // note this does not appear below
module cone5 = MidpointJetProducer {...}
module cone7 = MidpointJetProducer {...}
module jetanalyzer = JetAnalyzer {...}
module otherthing = SomeModule {...}
module jetoutput = PoolOutputModule {...}
module all = PoolTriggerOutputModule {...}
module some = PoolTriggerOutputModule {...}
ParameterSet splitmerge05 = {...}

sequence cones = {cone5,cone7}
path term1 = {cones,jetanalyzer,jetoutput}
path term2 = {otherthing}
endpath = {all,some}

}

// maps to
{

ParameterSet main_input = {...}
ParameterSet cone5 = {...}
ParameterSet cone7 = {...}
ParameterSet jetanalyzer = {...}
ParameterSet otherthing = {...}
ParameterSet jetoutput = {...}
ParameterSet all = {...}
ParameterSet some = {...}
ParameterSet splitmerge05 = {...}
vstring allmodules = {‘‘cone5’’, ‘‘cone7’’, ‘‘jetanalyzer’’,

‘‘otherthing’’, ‘‘jetoutput’’,
‘‘all’’, ‘‘some’’}

vstring allpaths = {‘‘term1:cones,jetanalyzer,jetoutput’’,
‘‘term2:otherthing’’}

string endpath = {‘‘all,some’’}
}

Figure 7: Mapping from process section to ParameterSet

a bad thing, it just means that the input source interface probably needs an additional
method for producing a vector of events.

The mixing problem here refers to the process of taking each event from the main
input stream of events and perturbing or augmenting a set of objects within the event
from data from another stream. In other words, a special stream of MC events are are

DRAFT
1.3

5

DRAFT
1.3

5

48

blended into a main event data stream by specialized EDProducers. Here are the list of
assumption about this process:

• Each subdetector will have a specialize EDProducer that does the mixing for that
subdetector.

• Each of these mixer EDProducers uses the same blending event to modify the main
event.

• The blending events for a given set of mixers all come from a single source.
• The input is expected to produce a vector

The parameter set language contains specialized keywords for configuring mixing
jobs. The entire mixing process is encapsulated in a module that appears as a single ED-
Producer to the framework scheduler. Figure 8 on page 49 show a sample configuration
of a job that does mixing.

process myjob = {
source = FileBasedInput {...} // main stream of events

// source of minbias events
source minbias = PoissonFileInput {

string fileName = ‘‘precious_data’’;
double poisson_mean = 14.3;

}

// the special modules that do the mixing
mixer calmixer = CalorMixingModule {...}
mixer pixelmixer = PixelMixingModule {...}

// the module that holds everything together
module mixall = MixerBlock {

source input = minbias;
vmixer mixers = { calmixer, pixelmixer }

}

module output = PoolOutputModule {...}

path p = {mixall,output}
}

Figure 8: Sample mixer configuration

A Mixer is a module that receives the current event as an argument, along with a list
of other events that need to be blended into objects held within the current event.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 49

6.8 The ModuleFactory and ModuleRegistry

6.8.1 ModuleFactory

A phase-1 implementation of the ModuleFactory class has already been written, and is
available in the CVS repository. We have not yet written it up here.

The ModuleFactory is used only by the ModuleRegistry; all other client classes that wish
to obtain an instance of a configured module should use the ModuleRegistry.

6.8.2 ModuleRegistry

The ModuleRegistry provides a caching layer on top of the ModuleFactory. It is used
by the ScheduleBuilder, among other clients, as the source for configured module in-
stances.

The main member function of ModuleRegistry is ModuleRegistry::getWorker, which
has the same argument list as ModuleFactory::makeWorker.

In addition, ModuleRegistry should provide the ability to iterate through all the
currently-cached module instances.

6.8.2.1 Future Additions

In a later phase of development, but not in phase 1, the ModuleRegistry should provide
version management and validation for ‘plug-ins”. Using “cvs tags”, it should verify that
all modules come from the same CMS software release. It must support a development
mode, where untagged modules can be mixed in with released one, and assure that the
provenance information clearly indicates this. This implies that the cvs tag string will
probably need to be compiled into the plugin library by the build system. The SEAL
PluginManager may already do this.

6.9 The Scheduler System

The scheduler system is the subsystem in the framework that is responsible for ex-
ecuting the sequence of reconstruction and decision making steps in the appropriate
order.

We will use a system that supports two mutually exclusive types of scheduling.

• explicit scheduling
• no scheduling

Which form of scheduling is used is at the option of the user running the program.

Figure 9 on the facing page shows the organization of EDProducers and FilterModules
and their relationship to elements present in the configuration of the trigger as presented
in § 5.9.4 on page 22. FilterModules and EDProducer modules are treated similarly by the

DRAFT
1.3

5

DRAFT
1.3

5

50

scheduling components as seen by the Worker abstraction. The main difference between
the types of Workers is that ProducerWorkers always “pass” the event and FilterWorkers
reflect the value returned from the FilterModule.

Figure 9: Class diagram of the ScheduleExecutor and its relationship with various types
of modules.

The ScheduleBuilder is responsible for organizing the network of modules to be in-
voked, and assuring that they are invoked in the correct order. It builds the schedule
used by the ScheduleExecutor.

Both ScheduleBuilder and ScheduleExecutor are concrete classes.

The ScheduleBuilder is configured by the same system as the EDProducers.

The ScheduleBuilder must know the sequence of EDProducers for each “path,” and
how each EDProducer is configured.

The ScheduleExecutor must assume that each EDProducer may request stopping of
execution of that “path.”

The ScheduleExecutor deals with “framework tasks,” which may include checking
memory usage between EDProducer invocations.

The ScheduleExecutor should be able to decide what action should be taken upon
each return status of a Filter.

6.9.1 ScheduleBuilder

The ScheduleBuilder uses the parsed path expressions from a ParameterSet object to
create a “schedule”. The schedule is expressed as a sequence of “Workers”.

The process of creating the sequence of “Workers” should have the following steps:

1. substitute sequence nodes into path nodes (sequences are just aliases);
2. verify that prerequisites as declared in path expressions are consistent as specified

in the parsed file
3. remove redundency in each of the paths, and
4. build the sequence of “Workers” to be given to the ScheduleExecutor.

6.9.1.1 Prerequisite Consistency Check Algorithm

Prerequisite checking only verifies that names declared in paths to be dependencies for
other names are consistent across all paths.

Here is one example of an algorithm that can check consistency of prerequisites
expressed in paths and sequences. This algorithm requires using the output from the
parser, which is a list of binary trees with operator nodes and operand nodes (leaves).

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 51

This algorithm also requires walking up the tree from a leaf node. The node classes that
represent operators/operands may need to be modified to allow this.

1) substitute sequences into paths

build map of sequence_name -> sequence node (WrapperNode)

for each i in path/end_path
for each element in i
if i is a sequence, then
substitute the sequence operator node into the tree
and make parent adjustments

2) gather up all leaf nodes

3) Validate consistency

make map of module_name -> dependency list object
for each n in leaf nodes
make new deplist object
p = parent of n
while p
if p is an ’&’ operator, then continue
if left operand of p is not the path we arrived on, then
findDeps(left operand of p, new deplist to fill)

p = parent of p

sort deplist and remove duplicates

attempt to insert the deplist into the map using name in leaf
if failed
if the entry in the map is not equal to the new one, then
we have a prerequisite inconsistency for this leaf

4) findDeps(node, deplist)
if node is a leaf, then same name in deplist
else

findDeps(left node of node)
findDeps(right node of node)

6.9.1.2 Path reduction

After initial validation, redundancy within each path can be eliminated. This elimination
can also be done strictly using the leaf names. For each path, form a list of leaf names
using a depth first left to right traversal of the node tree. For each name in the list,
remove all instances of that name that appear after this entry.

DRAFT
1.3

5

DRAFT
1.3

5

52

6.9.1.3 Future Additions

In a later phase of development, but not in phase 1, the following additional steps should
be taken:

1. verify that prerequisite EDProducts are available before each “Worker” is invoked,
and

2. allow requests for reconfiguration of modules in a schedule.

6.9.2 ScheduleExecutor

6.10 The EventProcessor

6.11 Non-Event Data

The Non-Event data is data whose ’interval of validity’ (IOV) is longer than one Event.
We have two types of IOVs which are distinguished by whether or not the DAQ system
initiated the interval of validity transition. IOVs initiated by DAQ (such as the Event or
a Run transition) are to be handled by the Event system. All other IOVs are handled by
the EventSetup System.

6.11.1 EventSetup System

Figure 10: The EventSetup is formed from the Records that have an IOV that overlaps
with the moment in time that is being studied.

The EventSetup provides a uniform access mechanism to all data/services con-
strained by an IOV . The main concepts for the EventSetup are:

1. Record: holds data and services which have identical IOVs.

2. EventSetup: holds all Records that have an IOV which overlap with the ’time’ of the
Event being studied.

6.11.2 EventSetup

The EventSetup class provides type-safe access to the various Records it contains. This
access is done through the EventSetup’s get<RecordT>() method. If the requested
Record is not available, an exception will be thrown. There is also an interface to get
data directly from an EventSetup instead of from a Record for the case where the data
type has been assigned a ’default’ Record. The direct data access interface is discussed
in a section 6.11.4.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 53

In addition to access to Records, the EventSetup has a method timestamp() which
return information about the ’instance in time’ for which the EventSetup is describing.

6.11.3 Records

Records provide type-safe access to the objects it contains. The access is handled
through the Record’s get(ESHandle<T>&) method. This is analogous to data access
from the Event.

A Record also provides access to its interval of validity (IOV) through its validityInterval()
method.

6.11.4 Contents of a Record

The EventSetup system sets no requirements on the C++ class type of an object which
may be placed in a Record. The only restriction is the lifetime of the objects within a
Record is only guaranteed to be as long as the IOV for which the Record is appropriate.
This does not mean that an object within a Record can not be reused across an IOV
transition, it only means code that reads the object from a Record should not assume
that it will be reused.

In the case where a data/service C++ type is only meant to come from one Record
type, then the ’default’ Record type can be declared at compile time. If a ’default’ Record
has been declared for a data type, then users can access that data directly from the
EventSetup via the get(ESHandle<T>&).

6.11.5 EventSetup System Components

The EventSetup system design, shown in figure 11, uses two categories of components
to do its work: ESSource and ESProducer. These categories are ’high-level abstractions’
built on top of low-level interfaces.

Figure 11: The EventSetup system design.

6.11.5.1 Low-level Interfaces

DataProxies: When a get call is made to a Record, a DataProxy is looked-up in the
Record and then that DataProxy is asked to handle the request.

DataProxyProvider: A container of related DataProxies. Advertises what Records it
has DataProxies for and is capable of creating those DataProxies on request. The Dat-
aProxyProviders are given to the EventSetupProvider who hands them off to the proper
EventSetupRecordProvider. The EventSetupRecordProvider then insert the DataProxies
from the DataProxyProvider into the proper Record instance.

DRAFT
1.3

5

DRAFT
1.3

5

54

ProxyFactoryProducer: A DataProxyProvider which uses pre-registered Proxy facto-
ries to create the necessary DataProxies. This is a convenience class for developers who
need to be able to write their own DataProxies.

ESProducer: The easiest to implement DataProxyProvider. Simply by writing a produce
method, the ESProducer will use the argument to the method to determine the Record
the algorithm is dependent upon and will use the return value to determine the type of
data/service being created. This deduction is done by calling the setWhatProduced(this)
from the class’ constructor.

EventSetupRecordIntervalFinder: Interface for determining the proper IOV of a Record,
or a group of Records. The EventSetupRecordIntervalFinders are given to the EventSe-
tupProvider who hands them off to the proper EventSetupRecordProvider. The EventSe-
tupRecordProvider uses its EventSetupRecordIntervalFinder to set the proper IOV of its
Record.

6.11.5.2 EventSetup Source

An ESSource is responsible for determining the IOV of a Record (or a set of set of
Records). The ESSource may also deliver data/services. An ESSource must inherit from
EventSetupRecordIntervalFinder and if it is delivering data/services it must also inherit
(possibly indirectly) from DataProxyProvider.

An ESSource normally reads its information from a ’persistent store’ (e.g., a database)
although it is not required to do so.

6.11.5.3 EventSetup Producer

Conceptually, an EventSetup Producer is an algorithm whose inputs to its algorithm
are dependent on data with IOVs. From an implementation stand-point, an EventSetup
Producer must inherit from DataProxyProvider.

6.11.6 Dependent Records

Sometimes an algorithm in the EventSetup is dependent on data coming from more than
one Record. For example, the tracking geometry is dependent on the ’ideal geometry’
and on the tracking alignment values. In such a case the Record used by that algorithm
needs to be declared ’dependent’ on the other Records. This dependency declaration is
accomplished by having the dependent Record inherit from DependentRecordImplementation<T,List>.
The template parameter List is a compile time list of the Records upon which this
Record is dependent.

Dependent Records allow access to the Records to which they are dependent via the
getRecord<T>() method.

The IOV of a dependent Record is the intersection of the IOV of all the Records to
which it depends. The EventSetup system guarantees that the proper relationships
between the IOVs is preserved.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 55

6.11.7 EventSetup configuration

EventSetup components are configured using the same configuration mechanism as
their Event counterparts, i.e., via the ParameterSet system. Two additional keywords
were added to the configuration language to allow the configuration of the EventSetup:
es_source and es_module.

6.12 Data Management

Commentary from: Luca Lista

The need for input and output modules is specified in section 6.6.5 on page 42.
The main applications will use POOL data format to write and retrieve data. It would
be convenient to allow multiple input and output modules to run concurrently in the
same job; multiple input modules, together with an appropriate event mixing module,
can provide the ability to mix simulated event with real minimum-bias background;
multiple output modules allow the writing of multiple streams or skims, each with a
configurable selection of events and EDProduct to be stored, within the same job.

It could be convenient to encapsulate POOL service as well as input and output tasks
in specific classes. Namely, we could have the classes PoolService to handle common
services, like file catalog and creation of caches (pool::IDataSvc); PoolInput and PoolOut-
put to read and write, respectively to POOL store.

PoolInput and PoolOutput require an access to the event product that may be different
from the one provided by the Event interface. In particular, the user access has to be
type-explicit, because the base class EDProductBase 1 has to be hidden to the user.
PoolInput and PoolOutput could well use EDProductBase polymorphically, without the
unneeded complication to “know” the product types, that is unneeded when managing
data persistency. For this reason, it could be useful to specify a class Store that is used
internally by the class Event, that provided polymorphic access to EDProductBase. This
class should be accessible to PoolInput and PoolOutput with an interface that may be as
simple as:

bool PoolInput::read(Store &);

void PoolInput::write(const Store &);

PoolInput::read(Store &) returns true or false if the event has been read suc-
cessfully or not (end of event collection reached).

Writing at the same time to multiple files requires some implementation subtleties
with POOL references. In particular, if no cross references are present among objects
it could be convenient and efficient to use markMultiwrite on references to EDProduct
selected to be stored; in presence of objects cross-references, in the cases where those

1I noticed that the document doesn’t contain (yet) the architecture of EDProductBase and the templated
subclass EDProduct. This should be included in order to define EDProductBase in this context.

DRAFT
1.3

5

DRAFT
1.3

5

56

could be required, markMultiwrite does not guarantee to preserve the correct reference
in multiple files, and the most convenient solution could be to use multiple caches.

To be completed

7 Design of Interfaces to Other Systems

8 Development Approach

To be filled in later.

9 Release Management and Testing

To be filled in later.

10 Deployment

Can we refer to some official CMS document here?

A Glossary of Terms

It seems useful to agree up a set of terms to use for the various ideas we have been
discussing. Here is a working list of the terms we have used. This list is an uneven
mixture of items, some of which are very general and some of which are very specific.

EDProduct Abstract base class of “things” stored in the Event.

Sometimes we use the term EDProduct to mean an instance of a concrete class that
derives from EDProduct.

Event A concrete class. Event provides the interface used by Module code (among
other clients) to obtain EDProducts used for input, and also the interface to which
EDProducts are published.

Module Abstract base class of all the “worker units” manipulated directly by the frame-
work.

EDProducer A Module that puts EDProducts into the Event. Often, it will put only one;
it is allowed to put more.

ModuleFactory A ModuleFactory creates Module instances.

Subsystem A subsystem is a loose collection of objects that act together to perform
some clearly identifiable task.

DRAFT
1.3

5

DRAFT
1.3

5

CMS Core Software Re-engineering Roadmap (Rev. 1.35) 57

Bibliography

[1] C. Grandi, D. Stickland, L. Taylor, ed., The CMS Computing Model, CERN-LHCC-
2004-035/G-083, CMS Note 2004-031.

[2] E. Frank, ProxyDict Programmers Guide, available at
http://hep.uchicago.edu/˜efrank/talks/ProxyDict.pdf

[3] X. Wang, D. Feng, X. Lai and H. Yu, Collisions for Hash Functions MD4, MD5,
HAVAL-128 and RIPEMD,Cryptology ePrint Archive, Report 2004/199, available at
http://eprint.iacr.org.

